

Fonction exponentielle de base a	Contrôle n°2 – 1h avec calculatrice	Nom :	
	Tronc commun: 20 pts	Classe : TSTI2	
	Spécialité : 0 pt	Classe : 15112	

Exercice 1:3 pts

Dans un magasin, un pull coute $60 \in$. Aux périodes de soldes, le prix du pull baisse de 15%. On note (u_n) le prix du pull après n périodes de soldes.

- 1. Déterminer les valeurs de u_0 et u_1 .
- 2. Pour tout $n \in \mathbb{N}$, exprimer u_{n+1} en fonction de u_n puis u_n en fonction de n
- 3. Calculer le prix du pull après 3 périodes de soldes.

Exercice 2: 4 pts

Ecrire les nombres suivants sous la forme d'une seule puissance a^k . Ecrire les calculs.

$$A = \frac{7.1^{-6.8} \times (7.1^{-3})^{7.1}}{7.1^{5.8} \times 7.1^{-12.1}}$$

$$B = 15^{-2} \times 0.8^{-2} \times 7.8^{-2}$$

Exercice 3: 6 pts

Samuel veut vendre un casque audio qu'elle n'utilise plus et dont le prix est compris entre 10€ et 30€ sur les sites de vente d'occasion.

Il estime que, pour un prix de x euros, l'offre est $f(x) = 1,05^x$ et la demande est $g(x) = 7 \times 1,05^{-x}$

- **1.** Quel est le sens de variation de la fonction *f* ? Justifier.
- **2.** Quel est le sens de variation de la fonction *g* ? Justifier.
- **3.** Calculer l'offre pour un prix de 15€ ainsi que la demande pour un prix de 15€. Arrondir à l'unité.
- **4.** Montrer que le prix d'équilibre est solution de l'équation $1{,}1025^x = 7$
- **5.** Grâce à la calculatrice, trouver le prix d'équilibre. Arrondir à l'unité.

<u>Aide</u>: Le prix d'équilibre est celui qui égalise la demande et l'offre, il est solution de f(x) = g(x).

Exercice 4: 7 pts

Ce tableau donne l'évolution du nombre de bénéficiaires de minima sociaux en milliers de personnes.

Année	2002	2003	2004	2005
Nombre de bénéfi- ciaires en milliers	3258,7		3425,4	3513,1
Année	2006	2007	2008	2009
Nombre de bénéfi- ciaires en milliers	3494,2	3334,6	3297,5	3502,7

- 1. Entre 2002 et 2003, le nombre de bénéficiaires a augmenté de 1,69%. Calculer le nombre de bénéficiaires en 2003 (arrondir à 0,1 millier).
- 2. Déterminer le coefficient multiplicateur entre 2007 et 2009, en déduire le taux d'évolution. Arrondir au centième.
- 3. Calculer le coefficient multiplicateur global entre 2002 et 2009 ? Arrondir au millième.
- 4. Calculer le taux d'évolution annuel moyen du nombre de bénéficiaires entre 2002 et 2009. Arrondir au centième.
- 5. Le gouvernement souhaite qu'en 2015, le nombre de bénéficiaires de minima sociaux ne dépasse pas 3 800 000. Si l'évolution moyenne est de 1,04% par an après 2009, cet objectif est-il réalisable ?