Chapitre V : Limite de suites

• Limite finie d'une suite :

Une suite a une limite finie si $\lim_{n\to\infty}u_n=L$, avec L un réel.

• Limite infinie d'une suite :

 $\lim_{n\to\infty}u_n=+\infty\text{, si pour tout entier naturel }n\geq N\text{, }u_n\geq A\text{, avec A un réel }\lim_{n\to\infty}u_n=-\infty\text{, si pour tout entier naturel }n\leq N\text{, }u_n\leq A\text{, avec A un réel }n\neq 0$

• Suites de référence :

$$\lim_{k \to \infty} n^k = +\infty$$
, Avec k un réel

$$\lim_{n\to\infty}\frac{1}{n^k}=0$$

$$\lim_{n\to\infty}\sqrt{n}=+\infty$$

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$$

Opération de limites :

a) Somme de deux suites

$\lim_{n \to +\infty} u_n =$	l	l	l	$+\infty$	$-\infty$	$+\infty$
$\lim_{n \to +\infty} v_n =$	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{n \to +\infty} u_n + v_n =$	l + l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	F.I.

c) Quotient de deux suites

$\lim_{n\to+\infty} u_n =$	l	l	$+\infty$ ou $-\infty$	$l \neq 0 \ ou \ +\infty \ ou \ -\infty$	0	$+\infty$ ou $-\infty$
$\lim_{n\to +\infty} v_n =$	$l' \neq 0$	$+\infty$ ou $-\infty$	$l' \neq 0$	0 (†)	0	$+\infty$ ou $-\infty$
$\lim_{n\to +\infty} \frac{u_n}{v_n} =$	$\frac{l}{l'}$	0	$+\infty$ ou $-\infty$	$+\infty$ ou $-\infty$ (règle des signes du produit)	F.I.	F.I.

b) Produit de deux suites

$\lim_{n\to+\infty} u_n =$	l	$l \neq 0$	$+\infty$ ou $-\infty$	0
$\lim_{n\to+\infty} v_n =$	l'	$+\infty$ ou $-\infty$	$+\infty$ ou $-\infty$	$+\infty$ ou $-\infty$
$\lim_{n\to +\infty} u_n \times v_n =$	$l \times l'$	$+\infty$ ou $-\infty$ (règle des signes du produit)	$+\infty$ ou $-\infty$ (règle des signes du produit)	F.I.

d) Formes indéterminées

∞ − ∞	0 × ∞	8	0

Pour lever une indétermination de limite, en présence de polynôme en n, factoriser par le monôme de degré le plus grand.

Théorème :

Toute suite croissante non majorée a pour limite $+\infty$ Toute suite décroissante non minorée a pour limite $-\infty$

- Théorème des gendarmes :

 (u_n) , (v_n) et (w_n) sont trois suites.

Si pour tout entier naturel $n \ge n_0$, $u_n \le v_n \le w_n$ et si les suites (u_n) et (w_n) convergent vers la même limite L, alors la suite (v_n) converge vers L

- Théorème limites de suites géométriques :

– Si –1 < q < 1, alors la suite (q^n) converge vers 0 : $\lim_{n\to\infty}q^n=+\infty$

- Si q > 1, alors la suite (q^n) diverge vers +∞: $\lim_{n\to\infty} q^n = 0$

- Si q = 1, alors la suite (q^n) converge vers 1

- Si q 6 -1, alors la suite (q^n) diverge et n'a pas de limite.

- Théorème de comparaison :

 (u_n) et (v_n) sont deux suites. Si pour tout entier naturel $n \ge n_0$

•
$$u_n \le v_n$$
 et $\lim_{n \to +\infty} u_n = +\infty$ alors $\lim_{n \to +\infty} v_n = +\infty$

• $u_n \le v_n$ et $\lim_{n \to +\infty} v_n = -\infty$ alors $\lim_{n \to +\infty} u_n = -\infty$

- Théorème de la limite monotone :

Toute suite croissante majorée est convergente Toute suite décroissante minorée est convergente