Note:...../10 Test connaissances n°8 – sujet A Nom: Classe: TSpé

Expression :	/2
2. Citer les hypothèses du « petit théorème du point fixe » :	/1
3. Donner la représentation paramétrique d'une droite, expliquer les paramètres.	/1
4. Soit X, X_1 , X_2 des variables aléatoires a) $E(aX)$ b) $V(aX) =$ c) $E(X_1 + X_2) =$ d) A-t-on $V(X_1 + X_2) = V(X_1) + V(X_2)$? Si oui, sous quelle condition?	/1
5. Donner la formule de la somme des termes d'une suite géométrique : $S_n=u_0+u_1+\cdots+u_n$	/1
6. Donner les limites des suites géométriques suivantes : $\lim_{n\to +\infty} U_0 q^n = \text{lorsque } q>1 \text{ et } U_0<0$ $\lim_{n\to +\infty} q^n = \text{lorsque } q=1$	/1
7. Donner la définition de la continuité d'une fonction f en un point a .	/0,5
8. Compléter : $e^{a+b} = \dots \qquad \ln(\sqrt{a}) = \dots$	/0,5
9. On considère la suite (u_n) définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{10} u_n (20 - u_n) \end{cases}$ a) Définir la fonction f telle que $u_{n+1} = f(u_n)$:	/2

Note:....../10 Test connaissances n°8 – sujet B Nom: Classe: TSpé

1. Pour la fonction logarithme népérien :	
Expression :	
Ensemble de définition :	
Fonction dérivée :	1-
Tableau de variation avec les limites :	/2
2. Citer le théorème de la limite monotone	
	/1
3. Donner l'expression de l'équation cartésienne d'un plan. Expliquer les paramètres.	
	/1
4. Soit X une variable aléatoire qui suit une loi binomiale de paramètres n et p. a) $E(X)$	
b) $V(X) =$	/1
5. Donner la formule de la somme des termes d'une suite arithmétique : $S_n = u_0 + u_1 + \dots + u_n$	
	/1
6. Donner les limites des fonctions suivantes : on sait que $n \in \mathbb{N}^*$	
$\lim_{x \to -\infty} x^n = \dots $ avec n impair $\lim_{x \to 0+} x \ln(x) = \dots$	/1
7. Citer le théorème des fonctions convexes avec les dérivées secondes	
	/0,5
8. 8. Compléter :	
$\ln\left(ab\right) = \dots \qquad e^{a-b} = \dots$	/0,5
9. On considère la suite (u_n) définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{10} u_n (20 - u_n) \end{cases}$	
d) Définir la fonction f telle que $u_{n+1}=f(u_n)$: e) On suppose que la suite (u_n) vérifie $0 \le u_n \le u_{n+1} \le 10$ • Que peut-on dire de $f([0;10])$? • Montrer que la suite (u_n) est convergente: f) Déterminer la valeur de la limite de la suite (u_n)	/2