
Fonctions trigonométriques :

Propriété:

1. La fonction cosinus est la fonction qui , à tout réel x associe $\cos x$, f : x -----> $\cos x$

2. La fonction sinus est la fonction qui , à tout réel x associe $\sin x$, f : x -----> $\sin x$

х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

Parité:

1.
$$\cos(-x) = \cos x$$
 fonction cosinus pair;
 $\sin(-x) = -\sin x$ fonction sinus impair

Périodicité:

$$\cos(x + 2k\pi) = \cos x$$
, k est un nombre relatif

$$\sin(x + 2k\pi) = \sin x$$

Limites:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1, \lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

Dérivée:

$$\sin(u))' = u' * \cos u$$

$$(\cos(u))' = -u' * \sin u$$

Une Primitive:

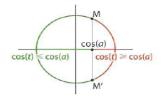
$$\cos ax = \frac{\sin(ax)}{a} \qquad ; \sin ax = -\frac{\cos(ax)}{a}$$

Formule d'addition:

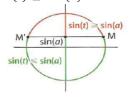
$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos(a-b) = \cos a \cos b + \cos a \cos b$$

 $\sin a \sin b$


$$\sin(a+b) = \sin a \cos b + \sin b \cos a, \quad \sin(a-b) = \sin a \cos b - \sin b \cos a$$

Formule de duplication :


$$cos(2a) = cos^2$$
 (a) - sin^2 (a) = $2 cos^2$ (a) - 1=1 - $2 sin^2$ (a); $sin(2a) = 2 sin a cos a$

Résolution d'inéquation :

Deux points d'un cercle trigonométrique d'abscisse cos(a) $(a \neq k\pi)$ définissent deux arcs représentant les solutions de $cos(t) \geq cos(a)$ et $cos(t) \leq cos(a)$

Deux points d'un cercle trigonométrique d'ordonnée sin(a) $(a \neq \frac{\pi}{2} + k\pi)$ définissent deux arcs représentant les solutions de $sin(t) \geq sin(a)$ et $sin(t) \leq sin(a)$

