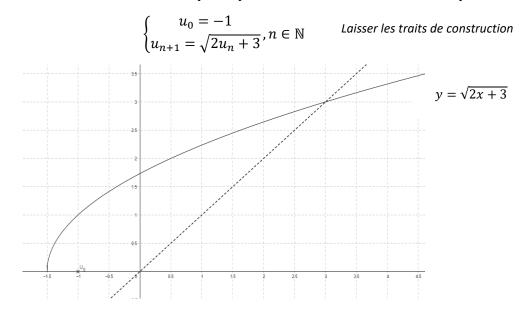


Suites et récurrence	Contrôle n°1 – 1h (sur 20 pts)	Nom:
	Avec calculatrice	Classe : TSpé

Exercice 1: (2 pts)

Représenter sur l'axe des abscisses, ci-dessous, les quatre premiers termes de la suite définie par :



Exercice 2: (4 pts)

Soit (u_n) une suite définie par $u_0=2$ et $u_{n+1}=\dfrac{u_n}{1+u_n}.$

Démontrer que pour tout $n\in\mathbb{N},$ $u_n=rac{2}{2n+1}.$

Exercice 3: (4 pts)

Démontrer que pour tout entier naturel n, tel que $n \ge 4$, on a $n! \ge 2^n$

Exercice 4: (8 pts)

Soit (u_n) une suite définie par : $\begin{cases} u_0 = 3000 \\ u_{n+1} = 0.75u_n + 500 \end{cases}$

- 1. Montrer que $u_1 = 2750$ et calculer u_2 .
- 2. Montrer par récurrence que la suite (u_n) est décroissante.
- 5. Soit (v_n) la suite définie par $v_n = u_n 2000$; pour tout entier naturel n.
 - a) Montrer que (v_n) est une suite géométrique. Préciser sa raison et son terme initial.
 - b) Exprimer v_n en fonction de n, puis en déduire une expression de u_n en fonction de n.

Exercice 5: (2 pts)

Calculer la somme $1 + 3 + 9 + 27 + \dots + 59049$ en utilisant une formule. Expliquer le calcul.