Exercice 1: 5 points

Au 1er janvier 2020, la centrale solaire de Big Sun possédait 10 560 panneaux solaires. On observe, chaque année, que 2 % des panneaux se sont détériorés et nécessitent d'être retirés tandis que 250 nouveaux panneaux solaires sont installés.

Partie A - Modélisation à l'aide d'une suite

On modélise l'évolution du nombre de panneaux solaires par la suite (u_n) définie par $u_0=10560$ et, pour tout entier naturel $n,u_{n+1}=0.98u_n+250$, où u_n est le nombre de panneaux solaires au 1er janvier de l'année 2020+n.

- 1. a. Expliquer en quoi cette modélisation correspond à la situation étudiée.
 - b. On souhaite savoir au bout de combien d'années le nombre de panneaux solaires sera strictement supérieur à 12 000.

À l'aide de la calculatrice, donner la réponse à ce problème.

c. Recopier et compléter le programme en Python ci-dessous de sorte que la valeur cherchée à la question précédente soit stockée dans la variable n à l'issue de l'exécution de ce dernier.

- 2. Démontrer par récurrence que, pour tout entier naturel n, on a $u_n \leq 12500$.
- 3. Démontrer que la suite (u_n) est croissante.
- 4. En déduire que la suite (u_n) converge. Il n'est pas demandé, ici, de calculer sa limite.
- 5. On définit la suite (v_n) par $v_n = u_n 12500$, pour tout entier naturel n.
 - a. Démontrer que la suite (v_n) est une suite géométrique de raison 0,98 dont on précisera le premier terme.
 - b. Exprimer, pour tout entier naturel n, v_n en fonction de n.
 - c. En déduire, pour tout entier naturel n, u_n en fonction de n.
 - d. Déterminer la limite de la suite (u_n) . Interpréter ce résultat dans le contexte du modèle.

Partie B - Modélisation à l'aide d'une fonction

Une modélisation plus précise a permis d'estimer le nombre de panneaux solaires de la centrale à l'aide de la fonction f définie pour tout $x \in [0; +\infty[$ par

$$f(x) = 12500 - 500e^{-0.02x + 1.4}$$

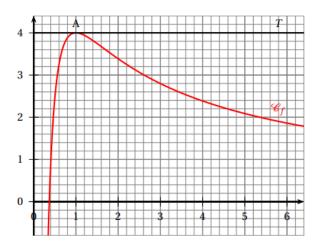
où x représente le nombre d'années écoulées depuis le 1er janvier 2020.

- 1. Étudier le sens de variation de la fonction f.
- 2. Déterminer la limite de la fonction f en $+\infty$.
- 3. En utilisant ce modèle, déterminer au bout de combien d'années le nombre de panneaux solaires dépassera 12 000.

Exercice 2: 5 points

Dans le plan muni d'un repère, on considère ci-dessous la courbe C_f représentative d'une fonction f, deux fois dérivable sur l'intervalle]0; $+\infty[$.

La courbe C_f admet une tangente horizontale T au point A(1; 4).



1. Préciser les valeurs f(1) et f'(1).

On admet que la fonction f est définie pour tout réel x de l'intervalle]0; $+\infty[$ par :

$$f(x) = \frac{a + b \ln x}{x}$$
 où a et b sont deux nombres réels.

2. Démontrer que, pour tout réel *x* strictement positif, on a :

$$f'(x) = \frac{b-a-b \ln x}{x^2}.$$

3. En déduire les valeurs des réels a et b.

Dans la suite de l'exercice, on admet que la fonction f est définie pour tout réel x de l'intervalle]0; $+\infty[$ par :

$$f(x) = \frac{4 + 4lnx}{x}.$$

- 4. Déterminer les limites de f en 0 et en $+\infty$.
- 5. Déterminer le tableau de variations de f sur l'intervalle]0; $+\infty[$.
- 6. Démontrer que, pour tout réel *x* strictement positif, on a :

$$f''(x) = \frac{-4 + 8lnx}{x^3}$$

7. Montrer que la courbe C_f possède un unique point d'inflexion B dont on précisera les coordonnées.

Exercice 3: 5 points

Dans cet exercice, les résultats des probabilités demandées seront, si nécessaire, arrondis au millième.

La leucose féline est une maladie touchant les chats ; elle est provoquée par un virus. Dans un grand centre vétérinaire, on estime à $40\,\%$ la proportion de chats porteurs de la maladie.

On réalise un test de dépistage de la maladie parmi les chats présents dans ce centre vétérinaire. Ce test possède les caractéristiques suivantes.

- Lorsque le chat est porteur de la maladie, son test est positif dans 90 % des cas.
- Lorsque le chat n'est pas porteur de la maladie, son test est négatif dans 85 % des cas.

On choisit un chat au hasard dans le centre vétérinaire et on considère les évènements suivants :

- M : « Le chat est porteur de la maladie » ;
- T : « Le test du chat est positif » ;
- \overline{M} et \overline{T} désignent les évènements contraires des évènements M et T respectivement.
- 1. a. Traduire la situation par un arbre pondéré.
 - b. Calculer la probabilité que le chat soit porteur de la maladie et que son test soit positif.
 - c. Montrer que la probabilité que le test du chat soit positif est égale à 0,45.
- d. On choisit un chat parmi ceux dont le test est positif. Calculer la probabilité qu'il soit porteur de la maladie.
- 2. On choisit dans le centre vétérinaire un échantillon de 20 chats au hasard. On admet que l'on peut assimiler ce choix à un tirage avec remise.

On note X la variable aléatoire donnant le nombre de chats présentant un test positif dans l'échantillon choisi.

- a. Déterminer, en justifiant, la loi de probabilité suivie par la variable aléatoire X.
- b. Calculer la probabilité qu'il y ait dans l'échantillon exactement 5 chats présentant un test positif.
- c. Calculer la probabilité qu'il y ait dans l'échantillon au plus 8 chats présentant un test positif.
- d. Déterminer l'espérance de la variable aléatoire X et interpréter le résultat dans le contexte de l'exercice.
- 3. Dans cette question, on choisit un échantillon de n chats dans le centre, qu'on assimile encore à un tirage avec remise. On note p_n la probabilité qu'il y ait au moins un chat présentant un test positif dans cet échantillon.
 - a. Montrer que $p_n = 1 0.55^n$.
 - b. Pour quel nombre n de chats, la probabilité p_n dépassera-t-elle 0,99 ?

Exercice 4: 5 points

Dans un cube ABCDEFGH de côté 1, on considère les points M, N et P centres respectifs des faces EFGH, BCGF et ABFE.

On considère le repère orthonormé $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.

- 1. Calculer les produits scalaires \overrightarrow{DF} . \overrightarrow{MP} et \overrightarrow{DF} . \overrightarrow{NP} .
- 2. Montrer que (DF) est perpendiculaire à (MNP).
- 3. Soit T le point d'intersection de (DF) et (MNP). Montrer que T est le projeté orthogonal de N sur (DF).
- 4. En calculant de deux façons différentes le produit scalaire \overrightarrow{DF} . \overrightarrow{DN} , déterminer la distance du point D au plan (MNP).
- 5. On note I le milieu de [PN].
 - a) Montrer que les vecteurs \overrightarrow{MI} et \overrightarrow{PN} sont orthogonaux.
 - b) En déduire l'aire du triangle MNP.
 - c) En déduire le volume du tétraèdre DMNP.