Chapitre I: Les suites

Le raisonnement par récurrence

Principe : Si la propriété P est : -vraie au rang n_0 (Initialisation).

-héréditaire à partir du rang n_0 (Hérédité)

alors la propriété P est vraie pour tout entier $n \ge n_0$ (conclusion)

Limites

Pour tout entier $k \ge 1$:

Les quatre formes indéterminées sont, par abus d'écriture :

"
$$\infty$$
- ∞ "," 0 x ∞ "," $\frac{\infty}{\infty}$ " et " $\frac{\infty}{\infty}$ "

Suite géométrique

Suite arithmétique

Formule de récurrence : u_{n+1} = q × u_n

Formule explicite : $u_n = u_0 \times q^n$

Formule de récurrence : u_{n+1} = u_n + r

Formule explicite : $u_n = r \times n + u_0$

Somme des termes d'une suite géométrique :

$$u_0 + u_0 q + u_0 q^2 + \dots + u_0 q^n = terme \ initial \times \frac{1 - q^{nbre \ termes}}{1 - q}$$

Somme des termes d'une suite arithmétique :

$$\begin{aligned} u_0 + u_0 + r + u_0 + 2r + \dots + u_0 + nr \\ &= nbre\ termes \times \frac{(terme\ initial + terme\ final)}{2} \end{aligned}$$

Limite d'une suite géométrique :

q	q ≤ -1	-1< q <1	q=1	q >1
$\lim_{n-\geq +\infty}q^n$	Pas de limite	0	1	+∞

Théorèmes de comparaison :

1)Si, à partir d'un certain rang, $u_n \le v_n$ et $\lim_{n \to +\infty} u_n$ =+ ∞ alors $\lim_{n \to +\infty} v_n$ =+ ∞

2)Si, à partir d'un certain rang, $u_n \ge v_n$ et $\lim_{n \to +\infty} u_n$ = - ∞ alors $\lim_{n \to +\infty} v_n$ = - ∞

Théorème d'encadrement (théorème des gendarmes) :

Si, à partir d'un certain rang, $u_n \le v_n \le w_n$ et $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = \mathsf{L}$ alors $\lim_{n \to +\infty} v_n = L$

Suites majorées, minorées, bornées

 (u_n) est majorée signifie qu'il existe un nombre M tel que, pour tout n, $u_n \leq M$

 (u_n) est minorée signifie qu'il existe un nombre m tel que, pour tout n, $u_n \ge m$

Une suite à la fois majorée et minorée est dite bornée

Théorème de convergence d'une suite monotone

- 1. Toute suite croissante majorée est convergente
- 2. Toute suite décroissante minorée est convergente

Corollaire:

- 1. Toute suite croissante non majorée a pour limite +∞
- 2. Toute suite décroissante non minorée a pour limite -∞