En classe de seconde, on formalise la notion de loi (ou distribution) de probabilité dans le cas fini en s’appuyant sur le langage des ensembles et on précise les premiers éléments de calcul des probabilités. On insiste sur le fait qu’une loi de probabilité (par exemple une équiprobabilité) est une hypothèse du modèle choisi et ne se démontre pas. Le choix du modèle peut résulter d’hypothèses implicites d’équiprobabilité (par exemple, lancers de pièces ou dés équilibrés, tirage au hasard dans une population) qu’il est recommandable d’expliciter ; il peut aussi résulter d’une application d’une version vulgarisée de la loi des grands nombres, où un modèle est construit à partir de fréquences observées pour un phénomène réel (par exemple : lancer de punaise, sexe d’un enfant à la naissance). Dans tous les cas, on distingue nettement le modèle probabiliste abstrait et la situation réelle.
Cours
Partie 2 : Situation d'équiprobabilité
Partie 3 : Opérations sur les probabilités
Partie 4 : Echantillonnage
Lien vers la synthèse de cours : lien
Lien vers le plan de travail et les exercices : lien
Vidéos
Calculer une probabilité à l'aide d'un tableau
Echantillonnage (Monka)