Cette section prolonge le programme de la classe de première sur les variables aléatoires en considérant des modèles probabilistes où interviennent deux ou plusieurs variables l’intérêt se portant sur leur somme, et notamment sur l’espérance et la variance de cette somme.
Les élèves ont déjà eu l’occasion, dans les classes antérieures, de rencontrer des exemples qui entrent dans ce cadre : lancers de deux dés, tirage de boules numérotées dans une urne (avec ou sans remise), roues de loterie, etc. En classe terminale, le schéma de Bernoulli est un exemple fondamental, où le nombre de succès peut être représenté comme somme de variables de Bernoulli indépendantes de même loi ; plus généralement, le modèle de la succession d’épreuves indépendantes fournit naturellement des exemples de variables aléatoires indépendantes. L’objectif est de rendre l’élève capable d’utiliser la linéarité de l’espérance pour des variables aléatoires quelconque et l’additivité de la variance pour des variables indépendantes dans diverses situations. Il s’agit de développer l’intuition probabiliste, les compétences de calcul et de raisonnement sur les variables aléatoires.